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ABSTRACT

A series of six 2,5-disubstituted adjacent bis(tetrahydrofuran) stereoisomers with trans /erythro /cis , trans /threo /trans , or cis /threo /cis relative
stereochemistry have been synthesized from known dihydroxycyclooctenes via ring opening/cross metathesis and Pd(0)-mediated asymmetric
double cycloetherification. The stereochemistry of four of these isomers has been found in the biologically active annonaceous acetogenin
natural products.

Annonaceous acetogenins comprise a large class of natural
products isolated from theAnnonaceae, a family of tropical
and subtropical trees and shrubs.1,2 The annonaceous aceto-
genins display a myriad of interesting biological properties
including anthelmintic, cytotoxic, antimalarial, antimicrobial,
antiprotozoal, and pesticidal activities. Annonaceous aceto-
genins are the most powerful known inhibitors of mitochon-
drial complex I (NADH/ubiquinone oxidoreductase) in mam-
malian and insect electron-transport systems.3 They are also
potent inhibitors of NADH oxidase in the plasma membranes
of cancer cells. These actions decrease both oxidative and
cytosolic ATP production, which results in apoptosis through
ATP deprivation.4 The annonaceous acetogenins have re-
ceived considerable attention in the synthetic community
because of their interesting structural and biological proper-
ties.5 Figure 1 shows representative annonaceous acetogenins
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Figure 1. Representative annonaceous acetogenins.
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that contain bis(THF) cores withcis/threo/cis, trans/erythro/
cis, andtrans/threo/transrelative stereochemistry about the
adjacent THF rings.

We initially demonstrated the utility of asymmetric double
cycloetherification to construct 2,5-disubstituted bis(THF)
ring systems in a formal synthesis of uvaricin.6 In this letter,
we present short, efficient syntheses of several diol bis(allylic
acetate) and diol bis(allylic benzoate) cycloetherification
substrates as well as a general approach to six stereoisomeric
bis(THF) cores of annonaceous acetogenins and analogues
thereof.

Our synthetic strategy is illustrated in Scheme 1. We
envisioned using reagent control through asymmetric double

cycloetherification of diol bis(allylic acetates) to set the
outermost stereocenters of the bis(THF) cores to maintain
C2-symmetry or to breakmeso-symmetry. The requisite diol
bis(allylic esters) could be accessed via ring opening/cross
metathesis (RO/CM) ofmeso- or C2-symmetric dihydroxy-
cyclooctenes, which are available7,8 from inexpensive cy-
clooctadiene (COD).

The syntheses ofmeso-diol bis(allylic acetate)3 andC2-
symmetric diol bis(allylic benzoates)4 andent-4are shown
in Scheme 2. Known 1,2-dihydroxycyclooctenes1,7 2,8 and

ent-28 were subjected to RO/CM. Treatment of1 with
Grubbs’ second-generation ruthenium catalyst5 (10 mol %)
and 1,4-diacetoxy-cis-2-butene10 gavemeso-diol bis(allylic

acetate)3 in excellent yield. However, RO/CM ofC2-
symmetric2 andent-2under the same conditions gave the
corresponding diol bis(allylic acetates) in low yield.11

Substituting 1,4-dibenzoyloxy-cis-2-butene and using5 (5
mol %) yielded diol bis(allylic benzoates)4 and ent-4 in
good yield. In all reactions, the major product is that with
all E double bonds, with a small amount ofE/Z double bond
isomers also detectable.12 Our experience with asymmetric
double cycloetherification13 has shown the presence ofE/Z
isomers to be inconsequential. This independence of the
cycloetherification reaction on double bond geometry was
verified for five-membered ring formation (vide infra).

With the meso-symmetric bis(allylic acetate) and the
enantiomericC2-symmetric bis(allylic benzoate) substrates
in hand, we systematically evaluated the Pd(0)-mediated
asymmetric double cycloetherification. A general representa-
tion of this reaction using (R,R)-N-[2,(2′-diphenylphosphino)-
benzamidocyclohexyl] (2′-diphenylphosphino) benzamide
ligand [(R,R)-DPPBA] and3 is shown in Scheme 3.

Although early attempts resulted in complete conversion to
an adjacent bis(THF) core, we obtained a mixture of the
desired desymmetrized product6 and two undesiredmeso-
symmetric diastereomers7 and 8 in which stereochemical
errors had occurred in one of the THF ring-forming reactions.

The configuration of the newly formed stereocenters in
this Pd(0)-mediated, chiral ligand-controlled cycloetherifi-
cation can be predicted using Trost’s transition-state model
shown in Figure 2.14 The phenyl groups from theC2-
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Scheme 1. Synthetic Strategy

Scheme 2. Preparation ofmeso-Bis(allylic acetate)3 and
C2-Symmetric Bis(allylic benzoates)4 andent-49

Scheme 3. Double Cycloetherification of3
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symmetric bis(diphenylphosphine) ligand surround the Pd
π-allyl complex in such a way that they act as a “flap” and
a “wall” as shown.15 The Pd complex can undergoπ-σ-π
interconversion, allowing Pd complexation to either face of
the π-allyl. The R group, representing the rest of the
molecule, can therefore be positioned in open space toward
a flap, which is the favored lower-energy complex, or toward
a wall, which is disfavored because of steric congestion.

With our substrates in this favored complex, when the
alcohol nucleophile is lined up for intramolecular attack, the
rest of the molecule, R1, will either extend away into open
space in the matched case, leading to a 2,5-cis-disubstituted
THF, or extend back toward the large Pdπ-allyl complex
in the mismatched case, affording a 2,5-trans-disubstituted
THF ring.

Initial conditions for the double cycloetherification in
Scheme 3 employed 4 mol % of Pd(0) in THF without any
additive. As shown in Table 1, these reaction conditions led
to a modest 2.12:1 diastereomeric ratio (dr) of6 to the
mixture of7 and816 but an excellent enantiomeric ratio (er)17

of 25.7:1 for 6 (entry 1).18 Note that two stereochemical
“errors” are required to forment-6.

Encouraged by this initial result, we examined several
potential influences on the diastereoselectivity of the cy-
clization. As mentioned earlier, the ring opening/cross
metathesis was an efficient way to access3 but left some
E/Z isomers in the product. The all-E analogue of3 was
synthesized19 and subjected to the same Pd(0)/DPPBA
cycloetherification conditions. No change in the diastereo-
selectivity was observed, so we do not believe theE/Z
isomers have any effect on the selectivity. Differences in
substrate geometry are no longer present in the cycloetheri-
fication transition state if geometric isomerization of the Pd
π-allyl complex occurs.15

Changing the concentration of Pd(0) in solution can also
affect the stereoselectivity of asymmetric allylic alkylation.
Lloyd-Jones found that at high Pd(0) concentrations the
discrete 1:1 ratio of Pd to ligand assumed thus far is in
equilibrium with several oligomers that are no longerC2-
symmetric.20When Pd(0) concentration was increased to 8
mol % (entry 2), there was a slight decrease in diastereo-
selectivity from the initial experiment, and when it was
decreased to 2 mol % (entry 3), there was a slight increase
in diastereoselectivity. Although consistent with the precedent
cited,21 these variations in stereoselectivity were modest.

A substantial improvement in diastereoselectivity for this
double cycloetherification was accomplished through the
screening of several different solvents and additives. In the
absence of an additive, there was a slight improvement in
diastereoselectivity to 4.5:1 in CH2Cl2 when compared to
THF and dioxane as solvents (entries 1, 4, and 5). Additives
were found to change selectivity significantly. In CH2Cl2,
the addition of NEt3 reduced the diastereoselectivity (entry
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Figure 2. Transition-state model using (R,R)-DPPBA for matched
and mismatched cyclizations.

Table 1. Optimization of Double Cycloetherification of3 with
(R,R)-DPPBA*

[Pd(0)]a solvent additive yield dri erl

1 4b THF none 87%f 2.12:1j 25.7:1
2 8b THF none 74%g 1.85:1k

3 2b THF none 58%f 2.88:1j

4 4b CH2Cl2 none 74%g 4.5:1k

5 3.5c dioxane none 89%g 1.8:1k

6 4b CH2Cl2 NEt3
d 76%f 1.53:1j

7 4b THF N(Hex)4Cle 50%g,h 9:1k

8 3.5c CH2Cl2 N(Hex)4Cle 78%g 1.3:1k

9 7c dioxane N(Hex)4Cle 89%g 19.9:1k >200:1

* Reactions in THF and CH2Cl2 were run at 0°C to room temperature.
Reactions in dioxane were run at room temperature. Legend:amol % of
Pd(0) source;bPd2(dba)3‚CHCl3; cPd(dba)2; d2 equiv;e60 mol %. f The sum
of separately isolated yields of6 and a mixture of7 and8 after extensive
chromatography.g Yield of a mixture of6, 7, and8. h Reaction did not go
to completion.i dr is the ratio of6 to the mixture of7 and 8. j Ratio
determined by isolated yields.k Ratio determined by quantitative13C NMR.21

l See ref 18.
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6), possibly due to an increase in the rate of nucleophilic
attack of the alcohol,22 decreasing the extent of interconver-
sion of π-allyl complexes and consequently decreasing the
ligand-mediated selectivity.

Addition of a chloride ion to Pd(0)-catalyzed allylic
substitutions is thought to promote interconversion ofπ-allyl
complexes by coordinating to the Pd center and facilitating
σ-complex formation,22,23 allowing more rapidπ-σ-π
exchange. In this case, use of N(Hex)4Cl in dioxane led to
a dramatic increase in diastereoselectivity (∼20:1) and very
high enantiomeric ratios (>200:1) for the major diastereomer
(entry 9).

Application of these optimized conditions to3 with the
enantiomeric DPPBA ligands is summarized in Scheme 4.

Cyclization using (R,R)-DPPBA resulted in an 89% yield
of a mixture favoring6 as a single enantiomer in a 19.9:1
dr. Using (S,S)-DPPBA, we observed similar results, with a
mixture of 14:1 dr produced in 80% yield and an er of the
desired product,ent-6, of 180:1 as determined by chiral
HPLC.18

With the success of the chloride ion additive in dioxane,
we applied these conditions to theC2-symmetric substrates
4 andent-4.24 Scheme 5 shows the reaction of substrate4
with (S,S)-DPPBA, which yielded a 5.0:1 ratio of the desired
product10 and the undesired, dissymmetric9 in 81% yield.
Double cycloetherification of4 with (R,R)-DPPBA afforded
a 5.8:1 ratio of11 and 9 with 11 formed in 71.6:1 er.25

Although the diastereomeric and enantiomeric ratios for the

products from theC2-symmetric substrates are not as high
as in the desymmetrization ofmeso-symmetric substrate3,
they are synthetically useful.

In summary, we have demonstrated a general, efficient,
two-step approach to 2,5-disubstituted adjacent bis(THF)
stereoisomers utilizing ring opening/cross metathesis and
Pd(0)-mediated asymmetric double cycloetherification. High
diastereomeric ratios (dr) and very high enantiomeric ratios
(er) were observed for the reagent-controlled asymmetric
double cycloetherifications in the presence of a chloride ion
additive. Differentiation of the homotopic or diastereotopic
terminal alkenes of these bis(THF) dienes is underway and
should provide rapid access to numerous adjacent bis(THF)-
containing annonaceous acetogenins.
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Scheme 4. Cyclization of3 to Enantiomerictrans/erythro/
cis-Bis(THF) Coresa

a Diastereomer ratios determined by quantitative13C NMR.

Scheme 5. Double Cycloetherification of4a

a Diastereomer ratios determined by quantitative13C NMR.
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